A quantitative genetic competition model for sympatric speciation
نویسنده
چکیده
I use multilocus genetics to describe assortative mating in a competition model. The intensity of competition between individuals is influenced by a quantitative character whose value is determined additively by alleles from many loci. With assortative mating based on this character, frequencyand density-dependent competition can subdivide a population with an initially unimodal character distribution. The character distribution becomes bimodal, and the subpopulations corresponding to the two modes are reproductively separated because mating is assortative. This happens if the resource distribution is unimodal, i.e. even if selection due to phenotypic carrying capacities is not disruptive. The results suggest that sympatric speciation due to frequency-dependent selection can occur in quite general ecological scenarios if mating is assortative. I also discuss the evolution of assortative mating. Since it induces bimodal phenotype distributions, assortative mating leads to a better match of the resources if their distribution is also bimodal. Moreover, in a population with a bimodal phenotype distribution, the average strength of frequency-dependent competition is lower than in a unimodal population. Therefore, assortative mating permits higher equilibrium densities than random mating even if the resource distribution is unimodal. Thus, even though it may lead to a less efficient resource use, assortative mating is favoured over random mating because it reduces frequency-dependent effects of competition.
منابع مشابه
Factors influencing progress toward sympatric speciation.
Many factors could influence progress towards sympatric speciation. Some of the potentially important ones include competition, mate choice and the degree to which alternative sympatric environments (resources) are discrete. What is not well understood is the relative importance of these different factors, as well as interactions among them. We use an individual-based numerical model to investi...
متن کاملEvidence for Sympatric Speciation by Host Shift in the Sea
The genetic divergence and evolution of new species within the geographic range of a single population (sympatric speciation) contrasts with the well-established doctrine that speciation occurs when populations become geographically isolated (allopatric speciation). Although there is considerable theoretical support for sympatric speciation, this mode of diversification remains controversial, a...
متن کاملSympatric speciation as a consequence of male pregnancy in seahorses.
The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seaho...
متن کاملPhase transition in a mean-field model for sympatric speciation
We introduce an analytical model for population dynamics with intra-specific competition, mutation and assortative mating as basic ingredients. The set of equations that describes the time evolution of population size in a mean-field approximation may be decoupled. We find a phase transition leading to sympatric speciation as a parameter that quantifies competition strength is varied. This tran...
متن کاملComputer Simulations to Study Sympatric Speciation Processes
We perform simulations based on the Penna model for biological ageing, now with the purpose of studying sympatric speciation, that is, the division of a single species into two or more populations, reproductively isolated, but without any physical barrier separating them. For that we introduce a new kind of competition among the individuals, using a modified Verhulst factor. The new competition...
متن کامل